Large Temperature Dependent Spin Orbit Coupling in Electron-Electron Interaction Dominated Orthorhombic SrIrO3 Film
نویسندگان
چکیده
The spin orbit coupling in orthorhombic SrIrO3 film was studied at different temperatures via weak anti-localization effect. The spin orbit coupling increased with the increasing temperature in the regime of two dimensional variable range hopping conduction. Near linearly temperature dependent Rashba coefficient was manifested and interpreted through the electron correlation assisted evolution of Landé g factor, which was assumed to be linearly decrease with temperature rising. Moreover, the t2g band of orthorhombic SrIrO3 is not fully separated into Jeff=1/2 and Jeff=3/2 bands, as proved by the Landé g factor at zero temperature with a value of 1.0568 which is between that corresponding to non-splitted t2g band and that to fully splitted t2g band.
منابع مشابه
Sensitively Temperature-Dependent Spin Orbit Coupling in SrIrO3 Thin Films
Spin orbit coupling plays a non-perturbation effect in many recently developed novel fields including topological insulators and spin-orbit assistant Mott insulators. In this paper, strongly temperature-dependent spin orbit coupling, revealed by weak anti-localization, is observed at low temperature in 5d strongly correlated compound, SrIrO3. As the temperature rising, increase rate of Rashba c...
متن کاملMAGNETISATION AND ELECTRON SPIN RESONANCE STUDIES OF TETRAHEDRAL AMORPHOUS CARBON
The magnetisation and electron spin resonance (ESR) spectrum of two specimens of tetrahedral amorphous carbon (ta-C), deposited from a filtered cathodic arc, were measured over a wide temperature range. The magnetisation was found to consist of superparamagnetic, paramagnetic and diamagnetic contributions. The superparamagnetic contribution resembled that recently found in carbon prepared from ...
متن کاملDirect observation of the Dirac nodes lifting in semimetallic perovskite SrIrO3 thin films
Perovskite SrIrO3 has long been proposed as an exotic semimetal induced by the interplay between the spin-orbit coupling and electron correlations. However, its low-lying electronic structure is still lacking. We synthesize high-quality perovskite SrIrO3 (100) films by means of oxide molecular beam epitaxy, and then systemically investigate their low energy electronic structure using in-situ an...
متن کاملRole of spin orbit coupling and electron correlation in the electronic structure of a 5d pyrochlore, Y2Ir2O7
Spin orbit coupling in 5d transition metal oxides such as Ir oxides is expected to be strong due to large atomic number of Ir and electron correlation strength will be weak due to large radial extension of the 5d orbitals. Hence, various anomalous electronic properties often observed in these systems are attributed to large spin-orbit interaction strength. Employing first principles approaches,...
متن کاملSpin conversion rates due to dipolar interactions in monoisotopic quantum dots at vanishing spin-orbit coupling
Dipolar interaction between the magnetic moments of electrons is studied as a source for electron spin decay in quantum dots or arrays of quantum dots. This magnetic interaction will govern spin decay, after other sources, such as the coupling to nuclear spins or spin-orbit coupling, have been eliminated by a suitable sample design. Electron-electron Coulomb interactions, important for magnetic...
متن کامل